Operation.Make_DSL
module Grad_spec : sig ... end
val term :
?init_data:Ir.Assignments.init_data ->
?fetch_op:Tensor.fetch_op ->
Tensor.op_fun
val number :
?label:Base.string Base.list ->
?axis_label:Base.string ->
Base.float ->
Tensor.t
val bits :
?label:Base.string Base.list ->
?axis_label:Base.string ->
Base.int64 ->
Tensor.t
val ndarray : Base.float Base.array -> Tensor.op_fun
val threefry4x32 :
Tensor.t ->
Tensor.t ->
?label:Base.string list ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_dims:Base.int Base.list ->
?output_dims:Base.int Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
unit ->
Tensor.t
val uint4x32_to_prec_uniform :
Tensor.t ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val uint4x32_to_prec_uniform1 :
Tensor.t ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val embed_self_id : ?label:Base.string list -> unit -> Tensor.t
val default_param_init :
(unit ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun)
Base.ref
The default initialization operation for param
calls.
val param :
?value:Base.float ->
?values:Base.float Base.array ->
?param_init:Tensor.op_fun ->
Base.string ->
?more_label:Base.string Base.list ->
Tensor.param_op_fun
val einsum :
?label:Base.string list ->
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val outer_sum :
?label:Base.string list ->
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val einsum1 :
?label:Base.string list ->
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val einmax1 :
?label:Base.string list ->
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val tropical :
?label:Base.string list ->
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val offsets : Tensor.op_fun
val range :
?label:Base.string list ->
?axis_label:Base.string ->
Base__Int.t ->
Tensor.t
val range_of_shape :
?label:Base.string list ->
?batch_dims:Base.Int.t Base.List.t ->
?input_dims:Base.Int.t Base.List.t ->
?output_dims:Base.Int.t Base.List.t ->
?batch_axes:(Base.string * Base.Int.t) Base.List.t ->
?input_axes:(Base.string * Base.Int.t) Base.List.t ->
?output_axes:(Base.string * Base.Int.t) Base.List.t ->
unit ->
Tensor.t
val stop_gradient :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val reshape :
l:Base.string ->
?b:Base.int Base.list ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
Ir.Ndarray.t ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.t
val wrap :
l:Base.string ->
?b:Base.int Base.list ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
Ir.Ndarray.t ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.t
val wrap_padded :
l:Base.string ->
?b:Base.int Base.list ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
padding:Ir.Ops.axis_padding Base.array ->
padded_value:Base.float ->
Ir.Assignments.Nd.t ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.t
val rebatch :
l:Base.string ->
Ir.Ndarray.t ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.t
val init :
l:Base.string ->
prec:Ir.Ops.prec ->
?b:Base.int Base__List.t ->
?i:Base.int Base__List.t ->
?o:Base.int Base__List.t ->
f:(Base.int Base.array -> Base.float) ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.t
val uniform :
unit ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val reshape_param :
l:Base.string ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
Ir.Ndarray.t ->
?more_label:Base.string Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.t
The input and output dimensions will be inferred if omitted. See reshape
.
val wrap_param :
l:Base.string ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
Ir.Ndarray.t ->
?more_label:Base.string Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.t
See wrap
.
val matmul :
?label:Base.string list ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val pointmul :
?label:Base.string list ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val add :
?label:Base.string list ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val pointpow : Base.float -> Tensor.t -> Tensor.op_fun
val relu :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val sat01 :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val fma :
?label:Base.string list ->
Tensor.t ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val number_int :
?label:Base.string Base.list ->
?axis_label:Base.string ->
int ->
Tensor.t
val embed_symbol :
?label:Base.string list ->
Ir.Indexing.static_symbol ->
Tensor.t
val embed_dim : ?label:Base.string list -> Shape.delayed_var_ref -> Tensor.t
val sub :
?label:Base.string list ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val pointdiv : Tensor.t -> Tensor.t -> Tensor.op_fun
val slice :
Idx.static_symbol ->
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val exp :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val log :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val log2 :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val sin :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val cos : Tensor.t -> Tensor.op_fun
val neg :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val sqrt :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val recip :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val recip_sqrt :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val tanh :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val where :
?label:Base.string list ->
Tensor.t ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val not :
?label:Base.string list ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val lt :
?label:Base.string list ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val eq :
?label:Base.string list ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val ne :
?label:Base.string list ->
Tensor.t ->
Tensor.t ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val uniform_at :
Tensor.t ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val uniform1 :
unit ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
val uniform_at1 :
Tensor.t ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun
module O : sig ... end