Module Operation.Make_DSL

Parameters

module Grad_spec : sig ... end

Signature

val term : ?init_data:Ir.Assignments.init_data -> ?fetch_op:Tensor.fetch_op -> Tensor.op_fun
val number : ?label:Base.string Base.list -> ?axis_label:Base.string -> Base.float -> Tensor.t
val bits : ?label:Base.string Base.list -> ?axis_label:Base.string -> Base.int64 -> Tensor.t
val ndarray : Base.float Base.array -> Tensor.op_fun
val threefry4x32 : Tensor.t -> Tensor.t -> ?label:Base.string list -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> ?input_dims:Base.int Base.list -> ?output_dims:Base.int Base.list -> ?input_axes:(Base.string * Base.int) Base.list -> ?output_axes:(Base.string * Base.int) Base.list -> ?deduced:Shape.deduce_within_shape -> unit -> Tensor.t
val uint4x32_to_prec_uniform : Tensor.t -> ?label:Base.string Base.list -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val uint4x32_to_prec_uniform1 : Tensor.t -> ?label:Base.string Base.list -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val embed_self_id : ?label:Base.string list -> unit -> Tensor.t
val default_param_init : (unit -> ?label:Base.string Base.list -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun) Base.ref

The default initialization operation for param calls.

val param : ?value:Base.float -> ?values:Base.float Base.array -> ?param_init:Tensor.op_fun -> Base.string -> ?more_label:Base.string Base.list -> Tensor.param_op_fun
val einsum : ?label:Base.string list -> ?capture_dims:Shape.delayed_var_ref Base.list -> Base.string -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val outer_sum : ?label:Base.string list -> ?capture_dims:Shape.delayed_var_ref Base.list -> Base.string -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val einsum1 : ?label:Base.string list -> ?capture_dims:Shape.delayed_var_ref Base.list -> Base.string -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val einmax1 : ?label:Base.string list -> ?capture_dims:Shape.delayed_var_ref Base.list -> Base.string -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val tropical : ?label:Base.string list -> ?capture_dims:Shape.delayed_var_ref Base.list -> Base.string -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val offsets : Tensor.op_fun
val range : ?label:Base.string list -> ?axis_label:Base.string -> Base__Int.t -> Tensor.t
val range_of_shape : ?label:Base.string list -> ?batch_dims:Base.Int.t Base.List.t -> ?input_dims:Base.Int.t Base.List.t -> ?output_dims:Base.Int.t Base.List.t -> ?batch_axes:(Base.string * Base.Int.t) Base.List.t -> ?input_axes:(Base.string * Base.Int.t) Base.List.t -> ?output_axes:(Base.string * Base.Int.t) Base.List.t -> unit -> Tensor.t
val stop_gradient : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val reshape : l:Base.string -> ?b:Base.int Base.list -> ?i:Base.int Base.list -> ?o:Base.int Base.list -> Ir.Ndarray.t -> ?fetch_op:Tensor.fetch_op -> ?top_down_prec:Base.bool -> ?batch_axes:(Base.string * Base.int) Base.list -> ?input_axes:(Base.string * Base.int) Base.list -> ?output_axes:(Base.string * Base.int) Base.list -> ?deduced:Shape.deduce_within_shape -> Base.unit -> Tensor.t
val wrap : l:Base.string -> ?b:Base.int Base.list -> ?i:Base.int Base.list -> ?o:Base.int Base.list -> Ir.Ndarray.t -> ?fetch_op:Tensor.fetch_op -> ?top_down_prec:Base.bool -> ?batch_axes:(Base.string * Base.int) Base.list -> ?input_axes:(Base.string * Base.int) Base.list -> ?output_axes:(Base.string * Base.int) Base.list -> ?deduced:Shape.deduce_within_shape -> Base.unit -> Tensor.t
val wrap_padded : l:Base.string -> ?b:Base.int Base.list -> ?i:Base.int Base.list -> ?o:Base.int Base.list -> padding:Ir.Ops.axis_padding Base.array -> padded_value:Base.float -> Ir.Assignments.Nd.t -> ?fetch_op:Tensor.fetch_op -> ?top_down_prec:Base.bool -> ?batch_axes:(Base.string * Base.int) Base.list -> ?input_axes:(Base.string * Base.int) Base.list -> ?output_axes:(Base.string * Base.int) Base.list -> ?deduced:Shape.deduce_within_shape -> Base.unit -> Tensor.t
val rebatch : l:Base.string -> Ir.Ndarray.t -> ?fetch_op:Tensor.fetch_op -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> ?input_axes:(Base.string * Base.int) Base.list -> ?output_axes:(Base.string * Base.int) Base.list -> ?deduced:Shape.deduce_within_shape -> Base.unit -> Tensor.t
val init : l:Base.string -> prec:Ir.Ops.prec -> ?b:Base.int Base__List.t -> ?i:Base.int Base__List.t -> ?o:Base.int Base__List.t -> f:(Base.int Base.array -> Base.float) -> ?fetch_op:Tensor.fetch_op -> ?top_down_prec:Base.bool -> ?batch_axes:(Base.string * Base.int) Base.list -> ?input_axes:(Base.string * Base.int) Base.list -> ?output_axes:(Base.string * Base.int) Base.list -> ?deduced:Shape.deduce_within_shape -> Base.unit -> Tensor.t
val uniform : unit -> ?label:Base.string Base.list -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val reshape_param : l:Base.string -> ?i:Base.int Base.list -> ?o:Base.int Base.list -> Ir.Ndarray.t -> ?more_label:Base.string Base.list -> ?input_axes:(Base.string * Base.int) Base.list -> ?output_axes:(Base.string * Base.int) Base.list -> ?deduced:Shape.deduce_within_shape -> Base.unit -> Tensor.t

The input and output dimensions will be inferred if omitted. See reshape.

val wrap_param : l:Base.string -> ?i:Base.int Base.list -> ?o:Base.int Base.list -> Ir.Ndarray.t -> ?more_label:Base.string Base.list -> ?input_axes:(Base.string * Base.int) Base.list -> ?output_axes:(Base.string * Base.int) Base.list -> ?deduced:Shape.deduce_within_shape -> Base.unit -> Tensor.t

See wrap.

val matmul : ?label:Base.string list -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val pointmul : ?label:Base.string list -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val add : ?label:Base.string list -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val pointpow : Base.float -> Tensor.t -> Tensor.op_fun
val relu : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val sat01 : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val fma : ?label:Base.string list -> Tensor.t -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val number_int : ?label:Base.string Base.list -> ?axis_label:Base.string -> int -> Tensor.t
val embed_symbol : ?label:Base.string list -> Ir.Indexing.static_symbol -> Tensor.t
val embed_dim : ?label:Base.string list -> Shape.delayed_var_ref -> Tensor.t
val sub : ?label:Base.string list -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val pointdiv : Tensor.t -> Tensor.t -> Tensor.op_fun
val slice : Idx.static_symbol -> ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val exp : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val log : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val log2 : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val sin : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val cos : Tensor.t -> Tensor.op_fun
val neg : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val sqrt : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val recip : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val recip_sqrt : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val tanh : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val where : ?label:Base.string list -> Tensor.t -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val not : ?label:Base.string list -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val lt : ?label:Base.string list -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val eq : ?label:Base.string list -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val ne : ?label:Base.string list -> Tensor.t -> Tensor.t -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val uniform_at : Tensor.t -> ?label:Base.string Base.list -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val uniform1 : unit -> ?label:Base.string Base.list -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
val uniform_at1 : Tensor.t -> ?label:Base.string Base.list -> ?top_down_prec:Base.bool -> ?batch_dims:Base.int Base.list -> ?batch_axes:(Base.string * Base.int) Base.list -> Tensor.param_op_fun
module O : sig ... end