Up – Index » neural_nets_lib » Ocannl_tensor » Operation » DSL_modules » PDSLval number :
?label :Base .string Base .list ->
?axis_label :Base .string ->
Base .float ->
Tensor.t
val bits :
?label :Base .string Base .list ->
?axis_label :Base .string ->
Base .int64 ->
Tensor.t
val threefry4x32 :
Tensor.t ->
Tensor.t ->
?label :Base .string Base .list ->
?batch_dims :Base .int Base .list ->
?batch_axes :(Base .string * Base .int) Base .list ->
?input_dims :Base .int Base .list ->
?output_dims :Base .int Base .list ->
?input_axes :(Base .string * Base .int) Base .list ->
?output_axes :(Base .string * Base .int) Base .list ->
?deduced :Shape.deduce_within_shape ->
unit ->
Tensor.t
val embed_self_id : ?label :Base .string list -> unit -> Tensor.t
val default_param_init :
(unit ->
?label :Base .string Base .list ->
?top_down_prec :Base .bool ->
?batch_dims :Base .int Base .list ->
?batch_axes :(Base .string * Base .int) Base .list ->
Tensor.param_op_fun )
Base .ref
val param :
?value :Base .float ->
?values :Base .float Base .array ->
?param_init :Tensor.op_fun ->
Base .string ->
?more_label :Base .string Base .list ->
Tensor.param_op_fun
val range :
?label :Base .string list ->
?axis_label :Base .string ->
Base__Int .t ->
Tensor.t
val range_of_shape :
?label :Base .string list ->
?batch_dims :Base .Int.t Base .List.t ->
?input_dims :Base .Int.t Base .List.t ->
?output_dims :Base .Int.t Base .List.t ->
?batch_axes :(Base .string * Base .Int.t) Base .List.t ->
?input_axes :(Base .string * Base .Int.t) Base .List.t ->
?output_axes :(Base .string * Base .Int.t) Base .List.t ->
unit ->
Tensor.t
val reshape :
l :Base .string ->
?b :Base .int Base .list ->
?i :Base .int Base .list ->
?o :Base .int Base .list ->
Ir.Ndarray.t ->
?fetch_op :Tensor.fetch_op ->
?top_down_prec :Base .bool ->
?batch_axes :(Base .string * Base .int) Base .list ->
?input_axes :(Base .string * Base .int) Base .list ->
?output_axes :(Base .string * Base .int) Base .list ->
?deduced :Shape.deduce_within_shape ->
Base .unit ->
Tensor.t
val wrap :
l :Base .string ->
?b :Base .int Base .list ->
?i :Base .int Base .list ->
?o :Base .int Base .list ->
Ir.Ndarray.t ->
?fetch_op :Tensor.fetch_op ->
?top_down_prec :Base .bool ->
?batch_axes :(Base .string * Base .int) Base .list ->
?input_axes :(Base .string * Base .int) Base .list ->
?output_axes :(Base .string * Base .int) Base .list ->
?deduced :Shape.deduce_within_shape ->
Base .unit ->
Tensor.t
val wrap_padded :
l :Base .string ->
?b :Base .int Base .list ->
?i :Base .int Base .list ->
?o :Base .int Base .list ->
padding :Ir.Ops.axis_padding Base .array ->
padded_value :Base .float ->
Ir.Assignments.Nd.t ->
?fetch_op :Tensor.fetch_op ->
?top_down_prec :Base .bool ->
?batch_axes :(Base .string * Base .int) Base .list ->
?input_axes :(Base .string * Base .int) Base .list ->
?output_axes :(Base .string * Base .int) Base .list ->
?deduced :Shape.deduce_within_shape ->
Base .unit ->
Tensor.t
val rebatch :
l :Base .string ->
Ir.Ndarray.t ->
?fetch_op :Tensor.fetch_op ->
?top_down_prec :Base .bool ->
?batch_dims :Base .int Base .list ->
?batch_axes :(Base .string * Base .int) Base .list ->
?input_axes :(Base .string * Base .int) Base .list ->
?output_axes :(Base .string * Base .int) Base .list ->
?deduced :Shape.deduce_within_shape ->
Base .unit ->
Tensor.t
val init :
l :Base .string ->
prec :Ir.Ops.prec ->
?b :Base .int Base__List .t ->
?i :Base .int Base__List .t ->
?o :Base .int Base__List .t ->
f :(Base .int Base .array -> Base .float) ->
?fetch_op :Tensor.fetch_op ->
?top_down_prec :Base .bool ->
?batch_axes :(Base .string * Base .int) Base .list ->
?input_axes :(Base .string * Base .int) Base .list ->
?output_axes :(Base .string * Base .int) Base .list ->
?deduced :Shape.deduce_within_shape ->
Base .unit ->
Tensor.t
val reshape_param :
l :Base .string ->
?i :Base .int Base .list ->
?o :Base .int Base .list ->
Ir.Ndarray.t ->
?more_label :Base .string Base .list ->
?input_axes :(Base .string * Base .int) Base .list ->
?output_axes :(Base .string * Base .int) Base .list ->
?deduced :Shape.deduce_within_shape ->
Base .unit ->
Tensor.t
val wrap_param :
l :Base .string ->
?i :Base .int Base .list ->
?o :Base .int Base .list ->
Ir.Ndarray.t ->
?more_label :Base .string Base .list ->
?input_axes :(Base .string * Base .int) Base .list ->
?output_axes :(Base .string * Base .int) Base .list ->
?deduced :Shape.deduce_within_shape ->
Base .unit ->
Tensor.t
val number_int :
?label :Base .string Base .list ->
?axis_label :Base .string ->
int ->
Tensor.t