Operation.Make_DSLmodule Grad_spec : sig ... endinclude module type of struct include Grad_spec endval grad_spec : Tensor.grad_specval term :
?init_data:Ir.Assignments.init_data ->
?fetch_op:Tensor.fetch_op ->
Tensor.op_funval number :
?label:Base.string Base.list ->
?axis_label:Base.string ->
Base.float ->
Tensor.tval bits :
?label:Base.string Base.list ->
?axis_label:Base.string ->
Base.int64 ->
Tensor.tval ndarray : Base.float Base.array -> Tensor.op_funval threefry4x32 :
Tensor.t ->
Tensor.t ->
?label:Base.string Base.list ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_dims:Base.int Base.list ->
?output_dims:Base.int Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
unit ->
Tensor.tval uint4x32_to_prec_uniform :
Tensor.t ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_funval uint4x32_to_prec_uniform1 :
Tensor.t ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_funval embed_self_id : ?label:Base.string list -> unit -> Tensor.tval default_param_init :
(unit ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_fun)
Base.refThe default initialization operation for param calls.
val param :
?value:Base.float ->
?values:Base.float Base.array ->
?param_init:Tensor.op_fun ->
Base.string ->
?more_label:Base.string Base.list ->
Tensor.param_op_funval einsum :
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
Tensor.t ->
Tensor.op_funval outer_sum :
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
Tensor.t ->
Tensor.op_funval einsum1 :
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
Tensor.op_funval einmax1 :
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
Tensor.op_funval tropical :
?capture_dims:Shape.delayed_var_ref Base.list ->
Base.string ->
Tensor.t ->
Tensor.t ->
Tensor.op_funval offsets : Tensor.op_funval range :
?label:Base.string list ->
?axis_label:Base.string ->
Base__Int.t ->
Tensor.tval range_of_shape :
?label:Base.string list ->
?batch_dims:Base.Int.t Base.List.t ->
?input_dims:Base.Int.t Base.List.t ->
?output_dims:Base.Int.t Base.List.t ->
?batch_axes:(Base.string * Base.Int.t) Base.List.t ->
?input_axes:(Base.string * Base.Int.t) Base.List.t ->
?output_axes:(Base.string * Base.Int.t) Base.List.t ->
unit ->
Tensor.tval stop_gradient : Tensor.t -> Tensor.op_funval reshape :
l:Base.string ->
?b:Base.int Base.list ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
Ir.Ndarray.t ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.tval wrap :
l:Base.string ->
?b:Base.int Base.list ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
Ir.Ndarray.t ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.tval wrap_padded :
l:Base.string ->
?b:Base.int Base.list ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
padding:Ir.Ops.axis_padding Base.array ->
padded_value:Base.float ->
Ir.Assignments.Nd.t ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.tval rebatch :
l:Base.string ->
Ir.Ndarray.t ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.tval init :
l:Base.string ->
prec:Ir.Ops.prec ->
?b:Base.int Base__List.t ->
?i:Base.int Base__List.t ->
?o:Base.int Base__List.t ->
f:(Base.int Base.array -> Base.float) ->
?fetch_op:Tensor.fetch_op ->
?top_down_prec:Base.bool ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.tval uniform :
unit ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_funval reshape_param :
l:Base.string ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
Ir.Ndarray.t ->
?more_label:Base.string Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.tThe input and output dimensions will be inferred if omitted. See reshape.
val wrap_param :
l:Base.string ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
Ir.Ndarray.t ->
?more_label:Base.string Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
Base.unit ->
Tensor.tSee wrap.
val matmul : Tensor.t -> Tensor.t -> Tensor.op_funval pointmul : Tensor.t -> Tensor.t -> Tensor.op_funval add : Tensor.t -> Tensor.t -> Tensor.op_funval pointpow : Base.float -> Tensor.t -> Tensor.op_funval relu : Tensor.t -> Tensor.op_funval sat01 : Tensor.t -> Tensor.op_funval fma : Tensor.t -> Tensor.t -> Tensor.t -> Tensor.op_funval number_int :
?label:Base.string Base.list ->
?axis_label:Base.string ->
int ->
Tensor.tval embed_symbol :
?label:Base.string list ->
Ir.Indexing.static_symbol ->
Tensor.tval embed_dim : ?label:Base.string list -> Shape.delayed_var_ref -> Tensor.tval sub : Tensor.t -> Tensor.t -> Tensor.op_funval pointdiv : Tensor.t -> Tensor.t -> Tensor.op_funval slice : Idx.static_symbol -> Tensor.t -> Tensor.op_funval exp : Tensor.t -> Tensor.op_funval log : Tensor.t -> Tensor.op_funval log2 : Tensor.t -> Tensor.op_funval sin : Tensor.t -> Tensor.op_funval cos : Tensor.t -> Tensor.op_funval neg : Tensor.t -> Tensor.op_funval sqrt : Tensor.t -> Tensor.op_funval recip : Tensor.t -> Tensor.op_funval recip_sqrt : Tensor.t -> Tensor.op_funval tanh : Tensor.t -> Tensor.op_funval where : Tensor.t -> Tensor.t -> Tensor.t -> Tensor.op_funval not : Tensor.t -> Tensor.op_funval lt : Tensor.t -> Tensor.t -> Tensor.op_funval eq : Tensor.t -> Tensor.t -> Tensor.op_funval ne : Tensor.t -> Tensor.t -> Tensor.op_funval uniform_at :
Tensor.t ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_funval uniform1 :
unit ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_funval uniform_at1 :
Tensor.t ->
?label:Base.string Base.list ->
?top_down_prec:Base.bool ->
?batch_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
Tensor.param_op_funmodule O : sig ... end